Abstract

A finite iterative algorithm is presented for solving the numerical solutions to the coupled operator matrix equations in Zhang (2017b). In this paper, a new finite iterative algorithm is presented for solving the constraint solutions to the coupled operator matrix equations [Formula: see text], where the constraint solutions include symmetric solutions, bisymmetric solutions and reflexive solutions as special cases. If this system is consistent, for any initial constraint matrices, the exact constraint solutions can be obtained by the introduced algorithm within finite iterative steps in the absence of the roundoff errors. Also, if this system is not consistent, the least-norm constraint solutions can be obtained within the finite iteration steps in the absence of the roundoff errors. Furthermore, if a group of suitable matrices are given, the optimal approximation solutions can be derived. Finally, several numerical examples are given to show the effectiveness of the presented iterative algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.