Abstract
In this paper, we study on the numerical solution of fractional nonlinear system of equations representing the one-dimensional Cauchy problem arising in thermoelasticity. The proposed technique is graceful amalgamations of Laplace transform technique with [Formula: see text]-homotopy analysis scheme and fractional derivative defined with Atangana–Baleanu (AB) operator. The fixed-point hypothesis is considered in order to demonstrate the existence and uniqueness of the obtained solution for the proposed fractional order model. In order to illustrate and validate the efficiency of the future technique, we consider three different cases and analyzed the projected model in terms of fractional order. Moreover, the physical behavior of the obtained solution has been captured in terms of plots for diverse fractional order, and the numerical simulation is demonstrated to ensure the exactness. The obtained results elucidate that the proposed scheme is easy to implement, highly methodical as well as accurate to analyze the behavior of coupled nonlinear differential equations of arbitrary order arisen in the connected areas of science and engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.