Abstract

We develop an algorithm for obtaining the maximum likelihood (ML) estimate of the displacement vector field (DVP) from two consecutive image frames of an image sequence acquired under quantum-limited conditions. The estimation of the DVF has applications in temporal filtering, object tracking, stereo matching, and frame registration in low-light level image sequences as well as low-dose clinical X-ray image sequences. In the latter case, a controlled X-ray dosage reduction may be utilized to lower the radiation exposure to the patient and the medical staff. The quantum-limited effect is modeled as an undesirable, Poisson-distributed, signal-dependent noise artifact. A Fisher-Bayesian formulation is used to estimate the DVF and a block component search algorithm is employed in obtaining the solution. Several experiments involving a phantom sequence and a teleconferencing image sequence with realistic motion demonstrate the effectiveness of this estimator in obtaining the DVF under severe quantum noise conditions (20-25 events/pixel).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.