Abstract
AbstractIn this article, the network‐based iterative learning guaranteed cost control problem for the linear systems subject to denial‐of‐service (DoS) attacks at input and output (I/O) sides is studied via faded channels. First, the DoS attacks are modeled by independent Bernoulli sequences, where the expectation and variance are known. The fading measurements in I/O channels are described as independent Gaussian distributions with known expectations and variances respectively. Then, the repetitive system and the proposed ILC scheme involving both the iteration and time axes are transformed into a random two‐dimensional (2D) Roesser model by using the 2D system theory. The mean‐square asymptotic stability is introduced and followed by the definition of guaranteed cost function. Next, sufficient conditions that can not only ensure the asymptotic stability but also the cost index are derived. By applying the linear matrix inequality technology, the gain matrices and the upper bound of the control cost are further obtained. After exploring the adverse effect brought by the random fading phenomenon, a compensation algorithm is then designed and the analysis is strictly deduced. Finally, an injection molding process example is given to confirm the validity of the design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.