Abstract

A high-order iterative learning controller (ILC) is proposed for the tracking control of an electrically stimulated human limb that is repeatedly required to perform a given task. The limb is actuated by the muscles, which are out of the control of the central nerve systems (CNS), through functional electrical stimulation (FES) or functional neuromuscular stimulation (FNS). By using the proposed discrete-time high-order P-type ILC updating law and the PD-type feedback controller, it is shown that the proposed control strategy, which learns from repetitions, provides strong robustness in tracking control of the uncertain time-varying FES systems, which is essential for the adaptation and customization of FES applications. The effectiveness of the proposed control scheme is demonstrated by simulation results on a one-segment planar system. Some experimental results are also presented to validate the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.