Abstract

Iterative Learning Control (ILC) has recently emerged as a powerful control strategy that iteratively achieves a higher accuracy for systems with repetitive tasks. The basic idea of ILC is to construct a compensation signal based on the tracking error in each repetition so as to reduce the tracking error in the next repetition. In this paper, particle swarm optimization (PSO) is proposed to optimize the input of iterative learning controller. The experimental results confirm that the proposed method not only has higher tracking accuracy than that of Improved Genetic Algorithm (IGA) and traditional Genetic Algorithm based elisit strategy (EGA), but also has the advantages of simple algorithm and good flexibility. And compared with conventional iterative learning control methods, it is easy to solve the optimal input for non-linear plant models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.