Abstract

Importance of batch processes has grown recently with the increasing economic competition that has pushed the manufacturing industries to pursue small quantity production of diverse high value-added products. Accordingly, systems engineering research on advanced control and optimization of batch processes has proliferated. In this paper, we examine the potentials of ‘iterative learning control (ILC)’ as a framework for industrial batch process control and optimization. First, various ILC rules are reviewed to provide a historical perspective. Next it is shown how the concept of ILC can be fused with model predictive control (MPC) to build an integrated end product and transient profile control technique for industrial chemical batch processes. Possible extensions and modifications of the technique are also presented along with some numerical illustrations. Finally, other related techniques are introduced to note the similarities and contemplate the opportunities for synergistic integration with the current ILC framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.