Abstract

This paper presents the iterative learning control for the industrial robot manipulators including actuator dynamics. Motivated by human learning, the basic idea of iterative learning control is to use information from previous execution of a trial in order to improve performance from trial to trial. This is an advantage, when accurate model of the system is not available as friction and actuator dynamics, though present in the system, are not modeled to reduce the computational complexity. In this paper different aspects of ILC including the design schemes and control algorithms are covered. The learning control scheme comprises two types of control laws: a linear feedback law and a feed-forward control law. In the feedback loop, the fixed gain PD controller provides stability of the system and keeps its state errors within uniform bounds. In the feed-forward path, a learning control rule/strategy is exploited to track the entire span of a reference input over a sequence of iterations. Algorithms are verified through detailed simulation results on a two DOF robot manipulator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.