Abstract

Iterative learning control (ILC) is an efficient way of improving the tracking performance of repetitive systems. While ILC can offer significant improvement to the transient response of complex dynamical systems, the fundamental assumption of iteration invariance of the process limits potential applications. Utilizing abstract Banach spaces as our problem setting, we develop a general approach that is applicable to the various frameworks encountered in ILC. Our main result is that robust invariant update laws lead to stable behavior in ILC systems, where iteration-varying systems converge to bounded neighborhoods of their nominal counterparts when uncertainties are bounded. Furthermore, if the uncertainties are convergent along the iteration axis, convergence to the nominal case can be guaranteed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.