Abstract

In rehabilitation, passive control mode is common used at early stages of the post-stroke therapy, when the impaired limb is usually unresponsive. The simplest is the use of a proportional-integral-derivative (PID) feedback control which usually regulates the position or the interaction force along a known reference. Nonetheless PID method cannot achieve an ideal tracking performance due to dynamical uncertainties and unknown time-varying periodic disturbances from the environment. In order to minimize steady-state error with respect to uncertainties in exoskeleton passive control, Iterative Learning Control(ILC) and Neural PID control are proposed to improve the control effective of conventional linear PID. In this paper, two different control algorithms are introduced. Moreover, an experimental study on a 5-DOF upper limb exoskeleton with them is addressed for comparison.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call