Abstract

The iterative learning control (ILC) obtains the unknown information from repeated control operations. Meanwhile, the tracking error from previous stages is used as the correction factor for the next control action. Therefore, the ILC controller can make the system tracking error converge to a small region within a limited number of iterations. This study builds a proportional-valve-controlled pneumatic X– Y table system for performing position tracking control experiments. The experiments involve implementing the ILC controllers and comparing the results. The P-type updating law with delay parameters is used for both the x- and y-axes in the repetitive trajectory tracking control. Experimental results demonstrate that the ILC controller can effectively control the system and track the desired circular trajectory at different speeds. The control parameters are varied to investigate their effects on the ILC convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.