Abstract

ABSTRACTThis paper proposes iterative learning control (ILC) for linear discrete delay systems with randomly varying trial lengths without knowing prior information on the probability distribution of random iteration length. Based on matrix delayed exponential function approach, an explicit solution to the linear discrete delay controlled systems is used to generate a sequence of outputs that approximate the desired reference by adopting two ILC update laws in the presence of randomly iteration-varying lengths. A new and direct mathematical technique is explored to deal with ILC for linear discrete delay systems. Two illustrative examples are provided to verify the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.