Abstract

In this paper, an iterative learning control algorithm was proposed for improving the permanent magnet linear motor (PMLM) velocity tracking performance under iteration-varying desired trajectories. A high-order internal model (HOIM) was utilized to describe the variation of desired trajectories in the iteration domain. By incorporating the HOIM into P-type ILC, the convergence of tracking error can be guaranteed. The rigorous proof was presented to show that the system error converge well. The simulation results indicate that the proposed high-order internal models based approach yields a good performance and achieves perfect tracking.Keywordsiterative learning algorithmhigh-order internal modelsdiscretetime plantpermanent magnet linear motors

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.