Abstract
Currently upper limb exoskeleton rehabilitation robots powered by electric motors used in the hospitals are usually cumbersome, bulky and unmovable. Our developed RUPERT is a low-cost lightweight portable exoskeleton rehabilitation robot that can encourage stroke patients with high stiffness in arm flexor muscles to receive frequent intensive rehabilitation trainings in the community or home, but its joints are unidirectionally actuated by pneumatic artificial muscles (PAMs). RUPERT with one PAM of each joint is not suitable for stroke patients with weak muscles in the flaccid paralysis period. Functional electrical stimulation (FES) uses current with low frequency to activate paralyzed muscles, which can produce muscle torque and compensate the unidirectional drawbacks of RUPERT, so as to realize the two-way motion of its joints for passive reaching trainings. As both the exoskeleton robot driven by PAMs and neuromuscular skeletal system under FES possess the highly nonlinear and time-varying characteristics, which adds control difficulty to the hybrid dynamic system, iterative learning control (ILC) is chosen to control this newly designed hybrid rehabilitation system to realize repetitive task trainings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.