Abstract
This paper proposes a new method for closed-loop automatic tuning of a proportional−integral−derivative (PID) controller based on a new iterative learning control (ILC) approach. The proposed approach is applicable to process control applications where there is usually a time-delay/lag phenomenon and where nonrepetitive step changes in the reference signal are far more common than repetitive ones assumed in most literature on ILC. The method does not require the control loop to be detached for tuning, but it requires the input of a periodic reference signal which can be specified by the user or derived from a relay feedback experiment. A modified ILC scheme iteratively changes the control signal by adjusting the reference signal only. The learning gain can be selected to satisfy a necessary and sufficient condition derived in the paper, based on the information available from the oscillations induced. Once a satisfactory performance is achieved, the PID controller is then tuned by fitting the controller to yield a fitting input and output characteristic of the ILC component. Simulation and experimental results are furnished to illustrate the effectiveness of the proposed tuning method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.