Abstract

In this paper, we propose an algorithm for image restoration based on fusing nonstationary edge-preserving priors. We develop a Bayesian modeling followed by an evidence approximation inference approach for deriving the analytic foundations of the proposed restoration method. Through a series of approximations, the final implementation of the proposed image restoration algorithm is iterative and takes advantage of the Fourier domain. Simulation results over a variety of blurred and noisy standard test images indicate that the presented method comfortably surpasses the current state-of-the-art image restoration for compactly supported degradations. We finally present experimental results by digitally refocusing images captured with controlled defocus, successfully confirming the ability of the proposed restoration algorithm in recovering extra features and rich details, while still preserving edges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.