Abstract
The generalized minimal residual (GMRES) algorithm is applied to image reconstruction using linear computed tomography (CT) models. The GMRES algorithm iteratively solves square, non-symmetric linear systems and it has practical application to CT when using unmatched back-projector/projector pairs and when applying preconditioning. The GMRES algorithm is demonstrated on a 3D CT image reconstruction problem where it is seen that use of unmatched projection matrices does not prevent convergence, while using an unmatched pair in the related conjugate gradients for least-squares (CGLS) algorithm leads to divergent iteration. Implementation of preconditioning using GMRES is also demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.