Abstract
AbstractImage fusion is the process of reducing uncertainty and minimizing redundancy while extracting all the useful information from the source images. Image fusion process is required for different applications like medical imaging, remote sensing, machine vision, biometrics and military applications. In this paper, an iterative fuzzy logic approach utilized to fuse images from different sensors, in order to enhance visualization. The proposed workfurther explores comparison between fuzzy based image fusion and iterative fuzzy fusion technique along with quality evaluation indices for image fusion like image quality index, mutual information measure, root mean square error, peak signal to noise ratio, entropy and correlation coefficient. Experimental results obtained from fusion process prove that the use of the proposed iterative fuzzy fusion can efficiently preserve the spectral information while improving the spatial resolution of the remote sensing images and medical imaging.Keywordsimage fusionpanchromaticmultispectralfuzzy logicimage quality indexmutual information measureentropycorrelation coefficient
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.