Abstract
A new method for joint direction-of-arrival (DOA) and sensor position estimation is introduced. The sensors are assumed to be randomly deployed except two reference sensors. The proposed method exploits the advantages of both higher-order-statistics (HOS) and second-order-statistics (SOS) with an iterative algorithm, namely Iterative Higher-Order Second-Order Statistics (IHOSS). A new cumulant matrix estimation technique is proposed for the HOS approach by converting the multisource problem into a single source one. IHOSS performs well even in case of correlated source signals due to the effectiveness of the proposed cumulant matrix estimate. A cost function is defined for the joint DOA and position estimation. The iterative procedure is guaranteed to converge. The ambiguity problem in sensor position estimation is solved by observing the source signals at least in two different frequencies. The conditions on these frequencies are presented. Closed-form expressions are derived for the deterministic Cramér-Rao bound (CRB) for DOA and unknown sensor positions for noncircular complex Gaussian noise with unknown covariance matrix. Simulation results show that the performance of IHOSS is significantly better than the HOS approaches for DOA estimation and closely follows the CRB for both DOA and sensor position estimations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.