Abstract

A closed-form explicit guidance algorithm for the deceleration, attitude adjustment and final landing phases before lunar probe soft landing is presented in this paper. Guidance with a variable-thrust engine is extended from the iterative guidance mode (IGM) to satisfy the terminal velocity, position, and attitude constraints. The closed form expression, obtained by integrating the acceleration and shutdown time, is analysed to obtain an explicit ex-pression for the velocity and position requirements and vertical touchdown of the spacecraft toward a designated landing site with high terminal accuracy. The influence of the attitude constraint on the motion equation is analysed to calculate the attitude, which is the physical control variable for the guidance loop. The variable thrust IGM formulation ensures the least switch of the thrust magnitude profile based on the analysis result of the residual flight altitude. The simulation results demonstrate that the proposed multi-constrained iterative guidance method can help accomplish an accurate lunar soft landing and that employed the algorithm is simple and easy to implement in engineering practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.