Abstract

In order to understand the mechanisms involved in deep brain stimulation, several finite element models have been made using reduced part of the head and simplified boundary conditions. In this study, we present a method to obtain the potential created by deep brain stimulation while including the natural boundary conditions on the head surface. The use of an iterative procedure allows to have a detailed model of the electrode and of the surrounding tissues based on DT-MRI while applying more realistic boundary conditions than previous studies

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.