Abstract
Fixture design is a critical step in machining. An important aspect of fixture design is the optimization of the fixture, the primary objective being the minimization of workpiece deflection by suitably varying the layout of fixture elements and the clamping forces. Previous methods for fixture design optimization have treated fixture layout and clamping force optimization independently and/or used nonlinear programming methods that yield sub-optimal solutions. This paper deals with application of the genetic algorithm (GA) for fixture layout and clamping force optimization for a compliant workpiece. An iterative algorithm that minimizes the workpiece elastic deformation for the entire cutting process by alternatively varying the fixture layout and clamping force is proposed. It is shown via an example of milling fixture design that this algorithm yields a design that is superior to the result obtained from either fixture layout or clamping force optimization alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.