Abstract
In the field of sensitivity analysis, Sobol’ indices are widely used to assess the importance of the inputs of a model to its output. Among the methods that estimate these indices, the replication procedure is noteworthy for its efficient cost. A practical problem is how many model evaluations must be performed to guarantee a sufficient precision on the Sobol’ estimates. The present paper tackles this issue by rendering the replication procedure iterative. The idea is to enable the addition of new model evaluations to progressively increase the accuracy of the estimates. These evaluations are done at points located in under-explored regions of the experimental designs, but preserving their characteristics. The key feature of this approach is the construction of nested space-filling designs. For the estimation of first-order indices, a nested Latin hypercube design is used. For the estimation of closed second-order indices, two constructions of a nested orthogonal array design are proposed. Regularity and uniformity properties of the nested designs are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.