Abstract
Flow in coastal waters contains multi-scale flow features that are generated by flow separation, shear-layer instabilities, bottom roughness and topographic form. Depending on the target application, the mesh design used for coastal ocean modelling needs to adequately resolve flow features pertinent to the study objectives. We investigate an iterative mesh design strategy, inspired by hydrokinetic resource assessment, that uses modelled dynamics to refine the mesh across key flow features, and a target number of elements to constrain mesh density. The method is solver-agnostic. Any quantity derived from the model output can be used to set the mesh density constraint. To illustrate and assess the method, we consider the cases of steady and transient flow past the same idealised headland, providing dynamic responses that are pertinent to multi-scale ocean modelling. This study demonstrates the capability of an iterative approach to define a mesh density that concentrates mesh resolution across areas of interest dependent on model forcing, leading to improved predictive skill. Multiple design quantities can be combined to construct the mesh density, refinement can be applied to multiple regions across the model domain, and convergence can be managed through the number of degrees of freedom set by the target number of mesh elements. To apply the method optimally, an understanding of the processes being model is required when selecting and combining the design quantities. We discuss opportunities and challenges for robustly establishing model resolution in multi-scale coastal ocean models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.