Abstract

Multi-energy spectral CT has a broader range of applications with the recent development of photon-counting detectors. However, the photons counted in each energy bin decrease when the number of energy bins increases, which causes a higher statistical noise level of the CT image. In this work, we propose a novel iterative dynamic dual-energy CT algorithm to reduce the statistical noise. In the proposed algorithm, the multi-energy projections are estimated from the dynamic dual-energy CT data during the iterative process. The proposed algorithm is verified on sufficient numerical simulations and a laboratory two-energy-threshold PCD system. By applying the same reconstruction algorithm, the dynamic dual-energy CT’s final reconstruction results have a much lower statistical noise level than the conventional multi-energy CT. Moreover, based on the analysis of the simulation results, we explain why the dynamic dual-energy CT has a lower statistical noise level than the conventional multi-energy CT. The underlying idea is to sample sparse in the energy dimension, which can be done because there is a high correlation between projection data of different energy bins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call