Abstract

Image deblurring attracts research attention in the field of image processing and computer vision. Traditional deblurring methods based on statistical prior largely depend on the selected prior type, which limits their restoring ability. Moreover, the constructed deblurring model is difficult to solve, and the operation is comparatively complicated. Meanwhile, deep learning has become a hotspot in various fields in recent years. End-to-end convolutional neural networks (CNNs) can learn the pixel mapping relationships between degraded images and clear images. In addition, they can also obtain the result of effectively eliminating spatial variable blurring. However, conventional CNNs have some disadvantages in generalization ability and details of the restored image. Therefore, this paper presents an iterative dual CNN called IDC for image deblurring, where the task of image deblurring is divided into two sub-networks: deblurring and detail restoration. The deblurring sub-network adopts a U-Net structure to learn the semantical and structural features of the image, and the detail restoration sub-network utilizes a shallow and wide structure without downsampling, where only the image texture features are extracted. Finally, to obtain the deblurred image, this paper presents a multiscale iterative strategy that effectively improves the robustness and precision of the model. The experimental results showed that the proposed method has an excellent effect of deblurring on a real blurred image dataset and is suitable for various real application scenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call