Abstract

We describe a nonperturbative numerical technique for solving the Hamilton-Jacobi equation of a nonlinear Hamiltonian system. We find the time-periodic solutions that yield accurate approximations to invariant tori. The method is suited to the case in which the perturbation to the underlying integrable system has a periodic and not necessarily smooth dependence on the time. This case is important in accelerator theory, where the perturbation is a periodic step function in time. The Hamilton-Jacobi equation is approximated by its finite-dimensional Fourier projection with respect to angle variables, then solved by Newton's method. To avoid Fourier analysis in time, which is not appropriate in the presence of step functions, we enforce time periodicity of solutions by a shooting algorithm. The method is tested in soluble models, and finally applied to a nonintegrable example, the transverse oscillations of a particle beam in a storage ring, in two degrees of freedom. In view of the time dependence of the Hamiltonian, this is a case with ``21/2 degrees of freedom,'' in which phenomena like Arnol'd diffusion can occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.