Abstract
Among the classes of LDPC codes that have been constructed and designed, the only class of LDPC codes that are cyclic is the class of codes constructed based on the incidence vectors of lines of finite geometries, called finite geometry LDPC codes. Cyclic finite geometry LDPC codes are known to have large minimum distances and can provide good error performance with very low error-floors using iterative decoding based on belief propagation. Their cyclic structure allows them to be efficiently and systematically encoded with simple shift-registers in linear time with linear complexity. An obvious question is whether, besides cyclic finite geometry LDPC codes, there are other cyclic codes with large minimum distances that can be efficiently decoded iteratively using channel soft information. In this paper, we present one such class of cyclic codes. Codes in this class are two-step majority-logic decodable and they are also constructed based on finite geometries. Two iterative decoding algorithms are devised for this class of cyclic codes and they provide significant coding gain over the two-step majority-logic decoding of codes in this class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.