Abstract
CRISPR/Cas12a is a highly promising detection tool. However, detecting single nucleotide variations (SNVs) remains challenging. Here, we elucidate Cas12a specificity through crRNA engineering and profiling of single- and double-base mismatch tolerance across three targets. Our findings indicate that Cas12a specificity depends on the number, type, location, and distance of mismatches within the R-loop. We also find that introducing a wobble base pair at position 14 of the R-loop does not affect the free energy change when the spacer length is truncated to 17 bp. Therefore, we develop a new universal specificity enhancement strategy via iterative crRNA design, involving truncated spacers and a wobble base pair at position 14 of the R-loop, which tremendously increases specificity without sacrificing sensitivity. Additionally, we construct a PAM-free one-pot detection platform for SARS-CoV-2 variants, which effectively distinguishes SNV targets across various GC contents. In summary, our work reveals new insights into the specificity mechanism of Cas12a and demonstrates significant potential for in vitro diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.