Abstract

In this paper, we focus on the control of the mean-field equilibrium of nonlinear networks of the Langevin type in the limit of small noise. Using iterative linear approximations, we derive a formula that prescribes a control strategy in order to displace the equilibrium state of a given system and remarkably find that the control function has a "universal" form under certain physical conditions. This result can be employed to define universal protocols useful, for example, in the optimal work extraction from a given reservoir. Generalizations and limits of application of the method are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.