Abstract

In this paper we present a unified function theoretic approach for the numerical solution of a wide class of two-point boundary value problems. The approach generates a class of continuous analog iterative methods which are designed to overcome some of the essential difficulties encountered in the numerical treatment of two-point problems. It is shown that the methods produce convergent sequences of iterates in cases where the initial iterate (guess),x0, is "far" from the desired solution. The results of some numerical experiments using the methods on various boundary value problems are presented in a forthcoming paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.