Abstract

Iterative clipping and filtering (ICF) is a useful technique to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. However, the classical ICF with Fast Fourier Transform/Inverse Fast Fourier Transform requires much iteration to approach a specified PAPR threshold in the complementary cumulative distribution function. To reduce the nonlinear distortion in both electrical and optical devices and in the optical fiber, we propose a novel ICF based on discrete cosine transform/inverse discrete cosine transform to reduce the PAPR in an intensity modulator and direct detection (IM/DD) optical OFDM system. Furthermore, the new technique considerably improves bit error rate (BER) and reduces the PAPR with just few iterations. The experimental results show that the receiver sensitivity at a BER of 1×10 −3 for a 2.5-Gbytes/s OFDM signal and after 200-km standard single-mode fiber transmission has been improved by 1.1, 2.3, and 3.6 dBm with launch powers of 6, 8, and 12 dBm respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call