Abstract
该文提出了一种基于Freeman分解与散射熵的极化SAR图像迭代分类新方法。该方法首先通过Freeman分解提取3种散射机理成分的功率,同时通过H/ 分解提取地物的散射熵;再利用这4个表征地物特性的参数将极化SAR图像中的地物划分为9个初始类,最后使用Wishart分类器对初始类进行迭代分类得到最终的结果。该方法合理利用了地物的极化散射信息,能够取得较好的分类效果,同时运算量也比较小。实测极化SAR数据的实验结果验证了该方法的有效性。
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electronics & Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.