Abstract

As the channel frequency selectivity becomes severer, the bit error rate (BER) performance of direct sequence spread spectrum (DSSS) signal transmission with rake combining degrades due to an increasing inter-path interference (IPI). Frequency-domain equalization (FDE) can replace rake combining with much improved BER performance in a severe frequency-selective fading channel. For FDE, accurate estimation of the channel transfer function is required. In this paper, we propose an iterative channel estimation that uses pilot chips which are time-multiplexed within each chip block for fast Fourier transform (FFT). The pilot acts as a cyclic-prefix of FFT block as well. The achievable BER performance is evaluated by computer simulation. It is shown that the proposed channel estimation has a very good tracking ability against fast fading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.