Abstract

Statistical iterative reconstruction algorithms have shown potential to improve cone-beam CT (CBCT) image quality. Most iterative reconstruction algorithms utilize prior knowledge as a penalty term in the objective function. The penalty term greatly affects the performance of a reconstruction algorithm. The total variation (TV) penalty has demonstrated great ability in suppressing noise and improving image quality. However, calculated from the first-order derivatives, the TV penalty leads to the well-known staircase effect, which sometimes makes the reconstructed images oversharpen and unnatural. In this study, we proposed to use a second-order derivative penalty that involves the Frobenius norm of the Hessian matrix of an image for CBCT reconstruction. The second-order penalty retains some of the most favorable properties of the TV penalty like convexity, homogeneity, and rotation and translation invariance, and has a better ability in preserving the structures of gradual transition in the reconstructed images. An effective algorithm was developed to minimize the objective function with the majorization-minimization (MM) approach. The experiments on a digital phantom and two physical phantoms demonstrated the priority of the proposed penalty, particularly in suppressing the staircase effect of the TV penalty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call