Abstract

Summary Moho determination is an important issue in studying the Earth’s interior structure. In accordance with the isostasy-compensation hypothesis in geodesy, it is possible to recover regional or global Moho by employing gravimetric data. The non-linear property is one of the main difficulties in solving the inverse problem of isostasy. To effectively address this issue, we propose an improved iterative inversion method that combines three-dimensional integration and linear regularization to achieve an approximate non-linear solution. To estimate the contributions of different components in the gravity-gradient tensor from the Gravity field and steady-state Ocean Circulation Explorer (GOCE), other than the vertical component, we additionally develop two joint inversion scenarios that utilize diagonal horizontal components and all five non-vertical components. The validating experiments are implemented in Qinghai-Tibet Plateau and its near zone. Simulations and applications illustrate that horizontal responses of Moho undulation are also significant. Yet the off-diagonal components provide minimal contributions, adding only 0.25 km of bias to the joint inversion results. Truncation effects serve as the primary source of systematic errors, resulting in ∼1 km error in vertical inversion results and ∼2.3 km error in joint inversion results. Then, the gravimetric Moho results are compared with CRUST1.0, and they show a generally strong correlation. Differences are obvious at the northern and eastern margins of the plateau. It is maybe due to the local changes in crust-mantle density contrasts. Upwelling of asthenospheric materials and fluid flow in the middle-lower crust are the two main factors. Based on high-precision satellite gravimetry, our study could provide new insights into the tectonic structure of Qinghai-Tibet Plateau.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call