Abstract

The curfew planning problem is to design an annual timetable for railway track maintenance teams. Each team is capable of handling certain types of repairs and replacement jobs. The jobs are combined into a set of projects according to their locations and types. The timetable shows which project should be worked on by each team on a weekly basis throughout an entire year. Our objective is to design a schedule with minimum network disruption due to ongoing maintenance projects that require absolute curfew. Absolute curfew projects are those that cause complete closure of the rail traffic. For tackling this problem, we develop four optimization-based iterative algorithms. We also present very promising computational results obtained within a few minutes using data provided by a major North American railroad.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.