Abstract
We consider equilibrium problems in the framework of the formulation proposed by Blum and Oettli, which includes variational inequalities, Nash equilibria in noncooperative games, and vector optimization problems, for instance, as particular cases. We show that such problems are particular instances of convex feasibility problems with infinitely many convex sets, but with additional structure, so that projection algorithms for convex feasibility can be modified in order to improve their convergence properties, mainly achieving global convergence without either compactness or coercivity assumptions. We present a sequential projections algorithm with an approximately most violated constraint control strategy, and two variants where exact orthogonal projections are replaced by approximate ones, using separating hyperplanes generated by subgradients. We include full convergence analysis of these algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.