Abstract

This article studies network resilience against structured additive perturbations to its topology. We consider dynamic networks modeled as linear time-invariant systems subject to perturbations of bounded energy satisfying specific sparsity and entry-wise constraints. Given an energy level, the structured pseudospectral abscissa captures the worst-possible perturbation an adversary could employ to destabilize the network, and the structured stability radius is the maximum energy in the structured perturbation that the network can withstand without becoming unstable. Building on a novel characterization of the worst-case structured perturbation, we propose iterative algorithms that efficiently compute the structured pseudospectral abscissa and structured stability radius. We provide theoretical guarantees of the local convergence of the algorithms and illustrate their efficacy and accuracy on several network examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.