Abstract

In this article an iterative method to compute the maximal solution and the stabilising solution, respectively, of a wide class of discrete-time nonlinear equations on the linear space of symmetric matrices is proposed. The class of discrete-time nonlinear equations under consideration contains, as special cases, different types of discrete-time Riccati equations involved in various control problems for discrete-time stochastic systems. This article may be viewed as an addendum of the work of Dragan and Morozan (Dragan, V. and Morozan, T. (2009), ‘A Class of Discrete Time Generalized Riccati Equations’, Journal of Difference Equations and Applications, first published on 11 December 2009 (iFirst), doi: 10.1080/10236190802389381) where necessary and sufficient conditions for the existence of the maximal solution and stabilising solution of this kind of discrete-time nonlinear equations are given. The aim of this article is to provide a procedure for numerical computation of the maximal solution and the stabilising solution, respectively, simpler than the method based on the Newton–Kantorovich algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.