Abstract

An improved iterative algorithm for designing diffractive phase elements for laser beam shaping in free space is presented. The algorithm begins with the Gerchberg-Saxton approach to obtain a stable solution. This is followed by several new iterations, in which modified constraining functions are imposed in the Fourier domain while the phase distribution of each iteration remains unchanged. For super-Gaussian beam shaping suitable for inertial confinement fusion applications the mean-square errors of the amplitude and the intensity profile of the entire beam fitted to the corresponding parameters of the 12th-power super-Gaussian beam are approximately 0.035 and 9.75x10(-3), respectively. Approximately 97.4% of the incident energy is converged into the desired region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.