Abstract

In the present paper, we introduce the concept of η -relaxed strong convexity of a differentiable functional and extend Ding and Yao’s auxiliary variational inequality technique [X.P. Ding, J.C. Yao, Existence and algorithm of solutions for mixed quasi-variational-like inclusions in Banach spaces, Computers and Mathematics with Applications, 49 (2005), 857–869] to develop iterative algorithms for finding the approximate solutions to the mixed quasi-variational-like inclusion problem (in short, MQVLIP) in a Banach space. On the one hand, we establish a result on the existence of a solution to the equilibrium problem by virtue of well-known Brouwer’s fixed-point theorem. Moreover, by using this result we derive the existence and uniqueness of a solution to the MQVLIP and the existence of the approximate solutions generated by the algorithm for the MQVLIP. On the other hand, we use the concepts of η -relaxed strong convexity of a differentiable functional and η -cocoercivity of a composite map to prove the strong convergence of the approximate solutions to the unique solution of the MQVLIP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.