Abstract

This paper considers optimization problems on Riemannian manifolds and analyzes iteration-complexity for gradient and subgradient methods on manifolds with non-negative curvature. By using tools from the Riemannian convex analysis and exploring directly the tangent space of the manifold, we obtain different iteration-complexity bounds for the aforementioned methods, complementing and improving related results. Moreover, we also establish iteration-complexity bound for the proximal point method on Hadamard manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.