Abstract

The wave function of the ground state of the helium atom is derived by the variational-iteration technique with the Hylleraas-Eckart momentum representation of the wave function as a first approximation. This function is used to calculate the ratios of the differential cross sections σ(n=2)/σ(n=1) and σ(2p)/σ(2s) for helium ionized by an electron impact. The calculation is conducted in the plane-wave impulse approximation for symmetric noncoplanar kinematics of the (e, 2e) process. The results are compared with previous calculations in which variational wave functions of the configurational interaction type were used. Good agreement with the existing experimental data for σ(n=2)/σ(n=1) is obtained. The results are generalized to helium ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.