Abstract

Applications of nuclear magnetic resonance (NMR) spectroscopy to isolated or cultured mammalian cells have been limited because of technical difficulties in maintaining cultures at the extremely high densities required by NMR. Among the well-engineered systems available for such analyses, hollow fiber bioreactors (HFBRs) can maintain the greatest cell density. This attribute of HFBRs makes them ideal for application to NMR-based studies. These systems are currently being applied in biotechnology, where they are used for the production of mammalian cell-derived products, such as monoclonal antibodies. In this paper, the application of a HFBR system designed especially for NMR-based investigations is described. Performance of this system is monitored by NMR and the resulting stability and density of hybridoma cultures are reported. The resulting signal-to-noise per unit time is the highest seen to date for a mammalian cell system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call