Abstract

The dynamics of functions \(f_\lambda (z)= \lambda \frac{\mathrm{e}^{z}}{z+1}\ \text{ for }\ z\in \mathbb {C}, \lambda >0\) is studied showing that there exists \(\lambda ^* > 0\) such that the Julia set of \(f_\lambda \) is disconnected for \(0 \lambda ^*\). Further, for \(0 \lambda ^*\). For complex \(\lambda \), it is proved that either all multiply connected Fatou components ultimately land on an attracting or parabolic domain containing the omitted value of the function or the Julia set is connected. In the latter case, the Fatou set can be empty or consists of Siegel disks. All these possibilities are shown to occur for suitable parameters. Meromorphic functions \(E_n(z) =\mathrm{e}^{z}(1+z+\frac{z^2}{2!}+\cdots +\frac{z^n}{n!})^{-1}\), which we call exponential-like, are studied as a generalization of \(f(z)=\frac{\mathrm{e}^{z}}{z+1}\) which is nothing but \(E_1(z)\). This name is justified by showing that \(E_n\) has an omitted value 0 and there are no other finite singular value. In fact, it is shown that there is only one singularity over 0 as well as over \(\infty \) and both are direct. Non-existence of Herman rings are proved for \(\lambda E_n \).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call