Abstract

Single-rate data flow graphs (DFGs) are often used for modeling iterative concurrent activities. A DFG and its iteration bound are equivalent to a marked graph and cycle time of a Petri net, respectively. Ramamoorthy and Ho (1980) developed an efficient algorithm for checking the minimum cycle time against a predetermined performance requirement. This work presents a systematic procedure to find the iteration bound and the critical loop with time complexity O(n/sup 3/ log n) (n being the number of nodes), memory requirements of O(n/sup 2/), and subcritical loops with time complexity O(n/sup 3/). The next-critical loops are also studied because they may become the new critical loop if the look-ahead technique is used. The above procedure has been implemented in the C programming language which interfaces with a Petri net X-window tool to display the performance results.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.