Abstract
This note considers the problem of Bayesian smoothing in nonlinear state-space models with additive noise using Gaussian approximations. Sigma-point approximations to the general Gaussian Rauch-Tung-Striebel smoother are widely used methods to tackle this problem. These algorithms perform statistical linear regression (SLR) of the nonlinear functions considering only the previous measurements. We argue that SLR should be done taking all measurements into account. We propose the iterated posterior linearization smoother (IPLS), which is an iterated algorithm that performs SLR of the nonlinear functions with respect to the current posterior approximation. The algorithm is demonstrated to outperform conventional Gaussian nonlinear smoothers in two numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.