Abstract

Epistemic justifications of solution concepts often refer to type structures that are sufficiently rich. One important notion of richness is that of a complete type structure, i.e., a type structure that induces all possible beliefs about types. For instance, it is often said that, in a complete type structure, the set of strategies consistent with rationality and common belief of rationality are the set of strategies that survive iterated dominance. This paper shows that this classic result is false, absent certain topological conditions on the type structure. In particular, it provides an example of a finite game and a complete type structure in which there is no state consistent with rationality and common belief of rationality. This arises because the complete type structure does not induce all hierarchies of beliefs—despite inducing all beliefs about types. This raises the question: Which beliefs does a complete type structure induce? We provide several positive results that speak to that question. However, we also show that, within ZFC, one cannot show that a complete structure induces all second-order beliefs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.