Abstract
Multidimensional forced-choice formats can significantly reduce the impact of numerous response biases typically associated with rating scales. However, if scored with classical methodology, these questionnaires produce ipsative data, which lead to distorted scale relationships and make comparisons between individuals problematic. This research demonstrates how item response theory (IRT) modeling may be applied to overcome these problems. A multidimensional IRT model based on Thurstone’s framework for comparative data is introduced, which is suitable for use with any forced-choice questionnaire composed of items fitting the dominance response model, with any number of measured traits, and any block sizes (i.e., pairs, triplets, quads, etc.). Thurstonian IRT models are normal ogive models with structured factor loadings, structured uniquenesses, and structured local dependencies. These models can be straightforwardly estimated using structural equation modeling (SEM) software Mplus. A number of simulation studies are performed to investigate how latent traits are recovered under various forced-choice designs and provide guidelines for optimal questionnaire design. An empirical application is given to illustrate how the model may be applied in practice. It is concluded that when the recommended design guidelines are met, scores estimated from forced-choice questionnaires with the proposed methodology reproduce the latent traits well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.